Functional vs. Imperative

• The design of the imperative languages is based directly on the von Neumann architecture:
 – Efficiency is the primary concern, rather than the suitability of the language for software development.
 – Heavy reliance on the underlying hardware ⇒ (unnecessary) restrictions on software development.

• The design of the functional languages is based on mathematical functions:
 – Offer a solid theoretical basis that is also closer to the user.
 – Relatively unconcerned with the architecture of the machines on which programs will run.
Mathematical Functions

• A mathematical function is a **mapping** of members of one set, called the **domain**, to another set, called the **range**:

 – The function \(\text{square}: \mathbb{Z} \rightarrow \mathbb{N}, \text{square}(x) = x \times x \)

 • \(\text{square} \) is the name of the function
 • \(x \) is an element in the domain \(\mathbb{Z} \)
 • \(\text{square}(x) \) is the corresponding element in the range \(\mathbb{N} \)
 • \(\text{square}(x) = x \times x \) defines the mapping.

 – The function \(\text{fact} : \mathbb{N} \rightarrow \mathbb{N} \)

 \[
 \text{fact}(x) = \begin{cases}
 1 & \text{if } x = 0 \\
 x \times \text{fact}(x-1) & \text{if } x > 0
 \end{cases}
 \]
Lambda Expressions

• A **lambda expression** specifies the parameters and the mapping of a nameless function in the following form:
 \[\lambda x. x \times x \] is the lambda expression for the mathematical function \(\text{square}(x) = x \times x \).
 \[\lambda x. \lambda y. x + y \] corresponds to \(\text{sum}(x, y) = x + y \).

• Lambda expressions are applied to parameters by placing the parameters after the expression:
 \((\lambda x. x \times x \times x)(2)\) evaluates to 8.
Functional Forms

• A higher-order function, or **functional form**, is one that:
 – either takes functions as parameters,
 – or yields a function as its result,
 – or both.

• Examples of functional forms:
 – functional composition.
 – apply-to-all.
Functional Composition

• Mathematical Notation:
 – Form: \(h \equiv f \circ g \)
 – Meaning: \(h(x) \equiv f(g(x)) \)
 – Example:
 • \(f(x) \equiv x + 2 \) and \(g(x) \equiv 3 \times x \).
 • \(h \equiv f \circ g \) is equivalent with \(h(x) \equiv (3 \times x) + 2 \).

• Lambda expression:
 \(\lambda x. \ x + 2 \)
 \(\lambda x. \ 3 \times x \)
 \(\lambda f. \ \lambda g. \ \lambda x. \ f (g \ x) \)
Apply-to-all

• A functional form that takes a single function as a parameter and yields a list of values obtained by applying the given function to each element of a list of parameters.

• Mathematical notation:
 – Form: \(\alpha \)
 – Function: \(h(x) \equiv x \times x \)
 – Example: \(\alpha(h, (2, 3, 4)) \) yields \((4, 9, 16) \)

• Lambda expression:
Functional Programming and Lambda Calculus

- Functional languages have a formal semantics derived from Lambda Calculus:
 - Defined by Alonzo Church in the mid 1930s as a computational theory of recursive functions.
 - The lambda calculus emphasizes expressions and functions, which naturally leads to a functional style of programming based on evaluation of expressions by function application to argument values.
Imperative Programming and Turing Machines

• **Imperative** programming: computation is performed through statements that change a program state.

• Modeled formally using **Turing Machines**:
 – Defined by Alan Turing in the mid 1930s.
 – Abstract machines that emphasize computation as a series of state transitions driven by symbols on an input tape, which leads naturally to an **imperative** style of programming based on assignment.
Functional Languages and Lambda Calculus

• Theorem (Church, Kleen, Turing):
 – Lambda Calculus and Turing Machines have the same computational power.

• Functional Languages have a denotational semantics based on lambda calculus:
 – the meaning of all syntactic programming constructs in the language is defined in terms of mathematical functions.
Scheme

- Designed and implemented by Steele and Sussman at MIT in 1975.
- Influenced syntactically and semantically by LISP and conceptually by Algol:
 - Lisp contributed the simple syntax, uniform representation of programs as lists and garbage collected heap allocated data.
 - Algol contributed lexical (static) scoping and block structure.
 - Lisp and Algol both defined recursive functions.
Scheme: Key Features

- **Scheme is statically scoped:**
 - uses the let, let* and letrec operators to define variable bindings within local scopes.

- **Scheme has dynamic or latent typing:**
 - types are associated with values at run-time.
 - a variable assumes the type of the value that is bound to at run-time.

- **Scheme objects are garbage-collected:**
 - run-time objects have potentially unlimited lifetime.

- **Scheme functions are first-class objects:**
 - functions can be created dynamically, stored in data structures, returned as results of expressions or other functions.
 - functions are defined as lists ⇒ can be treated as data.
Scheme: Key Features

- Scheme data objects (e.g. lists) are **first-class objects**:
 - they are all heap-allocated; can be returned as results from functions, and combined to form larger data structures.

- Scheme supports many different types:
 - numbers, characters, strings, symbols, and lists.
 - integers, real, complex, and arbitrary precision rational numbers.

- Scheme includes a large set of built-in functions for manipulation of lists and other data objects.

- Arguments to functions are always **passed by value**:
 - actual arguments are always evaluated before a function is called, whether or not the function needs the values (eager, or **strict evaluation**).
Syntax and Naming Conventions

- Scheme programs are made of:
 - keywords, variables, structured forms (e.g. lists), numbers, characters, strings, quoted vectors, quoted lists, whitespace, and comments.

- Identifiers (keywords, variables and symbols) are formed from the characters a-z, A-Z, 0-9, and ?!.-+*/<=>:$%^&_~
 - identifiers cannot start with 0-9,-,+.

- Predicate names end in the question mark symbol:
 - eq?, zero?, string=?

- Type predicates are the name of the type followed by a ?:
 - pair?, string?
Syntax and Naming Conventions

• Builtin character, string, and vector functions start with the name of the type:
 – string-append, …

• Functions that convert one type of object to another use the \(\rightarrow \) symbol:
 – string\(\rightarrow \)number

• Strings are formed using double quotes:
 – “Hello, world!”

• Numbers are just numbers:
 – 100, 3.14

• Some function names are overloaded (e.g., +, *, /).
Simple Expressions

• An expression in Scheme has the form \((E_1 \ E_2 \ \ldots \ E_n)\):
 – \(E_1\) evaluates to an operator.
 – \(E_2\) through \(E_n\) are evaluated as operands.

• Some examples using the Dr. Scheme interpreter:
 – \((+ \ 1 \ 2 \ 3 \ 4) \Rightarrow 10\)
 – \((+ \ 1 \ (* \ 2 \ 3) \ 4) \Rightarrow 11\)

• Scheme does **dynamic type checking** and **automatic type coercion**:
 – \((+ \ 2.5 \ 10) \Rightarrow 12.5\)
Simple Expressions

• Scheme uses inner-most evaluation:
 – arguments are evaluated first, then substituted as parameters to functions:
 (define (square x) (* x x))
 (square (+ 2 3)) ⇒ (square 5) ⇒ (* 5 5) ⇒ 25
 – once the subexpression (+2 3) is evaluated, the memory for this list can be garbage collected.

• Functions can also be defined using lambda expressions:
 (define square (lambda(x) (* x x)))
 (square 0.1) ⇒ 0.01
Top Level Bindings: \texttt{define}

- A Function for constructing functions \texttt{define}:
 1. To bind a symbol to an expression

 e.g., \texttt{(define pi 3.141593)}

 Example use: \texttt{(define two_pi (* 2 pi))}
 2. To bind names to lambda expressions

 e.g., \texttt{(define (square x) (* x x))}

 Example use: \texttt{(square 5)}

- The evaluation process for \texttt{define} is different! The first parameter is never evaluated. The second parameter is evaluated and bound to the first parameter.
Delayed Evaluation: \texttt{quote}

- \texttt{quote} takes one parameter; returns the parameter w/o evaluation.
 - \(\texttt{(quote (+ 1 2 3))} \Rightarrow (+ 1 2 3)\)

- The Scheme interpreter, named eval, always evaluates parameters to function applications before applying the function.

- Use \texttt{quote} to avoid parameter evaluation when it is not appropriate.

- Can be abbreviated with the apostrophe prefix operator:
 - \(\texttt{'(+ 1 2 3)} \Rightarrow (+ 1 2 3)\)
 - \(\texttt{(eval '(+ 1 2 3))} \Rightarrow 6\)
 - \(\texttt{(define sum123 '(+ 1 2 3))}\)
 - \(\texttt{sum123} \Rightarrow (+ 1 2 3)\)
 - \(\texttt{(eval sum123)} \Rightarrow 6\)
 - \(\texttt{'x} \Rightarrow x\)
Predicate Functions

• Boolean values:
 – #T is true and #F is false
 – sometimes () is used for false.

• Relational predicates:
 – =, >, <, >=, <=
 – implement <>

• Numerical predicates:
 – even?, odd?, zero?, negative?
Predicate Functions: Equality

1. Use eq? to compare two atoms:
 - (eq? 'a 'a) ⇒ #t
 - (eq? 1.0 1.0) ⇒ #f

2. Use eqv? to compare two numbers or characters:
 - (eqv? 1.0 1.0) ⇒ #t
 - (eqv? "hello" "hello") ⇒ #f

3. Use equal? to compare two objects for structural equality:
 - (equal? "hello" "hello") ⇒ #t
Built-in Logical Operators

- Logical operators:
 - (and <e1> ... <en>)
 - (or <e1> ... <en>)
 - (not <e1>)

- Parameter evaluation:
 - expressions are evaluated left to right:
 - short-circuit evaluation for and and or.

- Examples:
 - (and (< x 10) (> x 5))
 - (define (<= x y) (or (< x y) (= x y)))
 - (define (<= x y) (not (> x y)))
Control Flow: if

- **The special form** if:
 - (if <predicate> <then_exp> <else_exp>)
 - (if <predicate> <then_exp>)

- **Examples:**
 - (define (abs x)
 (if (< x 0)
 (if (< x 0)
 (- 0 x)
 x)
 x))
 - ((if #f + *) 2 3)
Control Flow: cond

• Multiple selection using the special form cond with the general form:

\[
\text{(cond }
\quad \text{(predicate}_1 \ \text{expr } \{ \text{expr} \})
\quad \text{(predicate}_2 \ \text{expr } \{ \text{expr} \})
\quad \ldots
\quad \text{(predicate}_k \ \text{expr } \{ \text{expr} \})
\quad \text{(else expr } \{ \text{expr} \}))
\]

• Returns the value of the last expression in the first pair whose predicate evaluates to true
Control Flow: cond

• (define (abs x)
 (cond ((< x 0) (- 0 x))
 (else x)))

• (define (compare x y)
 (cond
 ((> x y) “x is greater than y”)
 ((< x y) “y is greater than x”)
 (else “x and y are equal”)))
Factorial in Scheme

• (define (factorial x)
 (if (= x 0)
 1
 (* x (factorial (- x 1))))

• (define factorial (lambda (x)
 (if (= x 0)
 1
 (* x (factorial (- x 1)))))

Lecture 11
Lambda Expressions in Scheme

• \(\text{(lambda (<formal parameters>) <body>)} \)
 – When the lambda expression is evaluated, the environment in which it is evaluated is remembered.
 – When the procedure is called, the environment is augmented with bindings of formal params to actual params.
 – The expressions in the body are evaluated sequentially in order.

• Example:
 – \(((\text{lambda} (x \ y) (* \ x \ y) \) \ 2 \ 3) \ ;; \ multiply \ 2 \ with \ 3)\)
Let Expressions

• Allow the definition of local variable bindings.
• General form:

```
(let((<name1> <expression1>)
     (<name2> <expression2>)
     ...
     (<namek> <expressionk>))
  body)
```

– Evaluate all expressions;
– Bind the values to the names;
– Evaluate the body.
Let Expressions

- (define pi 3.14)
- (define (sum-of-pi-squared) (+ (square pi) (square pi)))

- (define (sum-of-pi-squared)
 (let ((pi-squared (square pi)))
 (+ pi-squared pi-squared)))

- Which is more efficient?
Let Expressions are Lambda Expressions

• “Syntactic sugar” for lambda expressions:

```plaintext
((lambda (<name1> ... <namek>)
    (<body>))
<expr1>
...
<exprk>)
```

– the result of the lambda expression is an anonymous procedure.
– all the argument expressions are evaluated before the procedure is called (because of call-by-value semantics).
– when the procedure is called, the variables for the formal parameters are bound to the values of the argument expressions and used in evaluating the body of the procedure.
Let* Expressions

• General form:

(let* ((<name1> <expression1>)
 (<name2> <expression2>)
 ...
 (<namek> <expressionk>))

 body
)

– The bindings are performed sequentially, from left to right.
– ⇒ earlier variable bindings apply to later variable bindings.
Let* Expressions are Lambda Expressions

- Let* examples:
 - (define x 0)
 - x ⇒ 0
 - (let ((x 2) (y x)) y)
 ⇒ 0
 - (let* ((x 2) (y x)) y)
 ⇒ 2

- Binding order is important ⇒ lexically nest the lambda expressions and the application to arguments:
 - ((lambda (x) ((lambda (y) y) x)) 2)
 ⇒ 2

Lecture 11
Lists in Scheme

• Almost everything in Scheme is a list:
 – the interpreter evaluates most lists as an operator followed by operands, and returns a result.
 • \((+ 1 2 3 4) \Rightarrow 10\)
 – list is evaluated as an expression, result is 10.
 • \(\text{‘}(+ 1 2 3 4) \Rightarrow (+ 1 2 3 4)\)
 – result is a list of symbols
 – the empty list is denoted by \(()\).

• Examples:
 – \(\text{‘}(\text{colorless green ideas sleep furiously})\)
 – \(\text{‘}((\text{green}) \text{ ideas } ((\text{sleep}) \text{ furiously})) ()\)
List Operations: \texttt{car} and \texttt{cdr}

- \texttt{car} takes a list parameter; returns the first element of that list e.g.

 \begin{align*}
 \text{(car ' (A B C))} & \text{ yields A} \\
 \text{(car ' ((A B) C D))} & \text{ yields (A B)}
 \end{align*}

- \texttt{cdr} takes a list parameter; returns the list after removing its first element e.g.

 \begin{align*}
 \text{(cdr ' (A B C))} & \text{ yields (B C)} \\
 \text{(cdr ' ((A B) C D))} & \text{ yields (C D)}
 \end{align*}
List Creation: cons and list

• cons:
 – takes two parameters:
 • the first can be either an atom or a list;
 • the second is a list;
 • returns a new list that includes the first parameter as its first element and the second parameter as the remainder.
 – \((\text{cons 'A '}(\text{B C})) \Rightarrow (\text{A B C})\)

• list:
 – takes any number of parameters;
 – returns a list with the parameters as elements.
 – \((\text{list 'a 'b 'c}) \Rightarrow (\text{a b c})\)
• **cons** can also be used to create **pairs** or **improper lists**:
 > (cons ‘a ‘b) ⇒ (a . b)
 > (car ‘(a . b)) ⇒ a
 > (cdr ‘(a . b)) ⇒ b

• **When the second argument is a list, the result is a list**:
 > (cons ‘a ‘(b)) ⇒ (a b)
 > (car ‘(a b)) ⇒ a
 > (cdr ‘(a b)) ⇒ (b)
Predicates on Lists

- **list?** takes one parameter; it returns #t if the parameter is a list; otherwise #f
 - (list? '()) ⇒ #t
 - (list? (cons 'a '())) ⇒ #t

- **null?** takes one parameter; it returns #t if the parameter is the empty list; otherwise #f
 - (null? '()) ⇒ #t

- **equal?**
 - (equal? '(a b) (list 'a 'b)) ⇒ #t
Scheme Functions: Example

- **member** takes as parameters an atom and a simple list:
 - returns #t if the atom is in the list;
 - returns #f otherwise.

```
(define (member atom list)
  (cond
   ((null? list) #f)
   ((eq? atom (car list)) #t)
   (else (member atom (cdr list)))))
```
Scheme Functions: Example

- **equalsimp** takes two simple lists as parameters:
 - returns #T if the two simple lists are equal;
 - returns #F otherwise.

```scheme
(define (equalsimp lis1 lis2)
  (cond
    ((null? lis1) (null? lis2))
    ((null? lis2) #F)
    ((eq? (car lis1) (car lis2))
      (equalsimp (cdr lis1) (cdr lis2)))
    (else #F)
  ))
```
Scheme Functions: Example

- **equal** takes two general lists as parameters:
 - returns #T if the two lists are equal;
 - returns #F otherwise.

```
(define (equal list1 list2)
  (cond
    ((not (list? list1)) (eq? list1 list2))
    ((not (list? list2)) #F)
    ((null? list1) (null? list2))
    ((null? list2) #F)
    ((equal (car list1) (car list2))
      (equal (cdr list1) (cdr list2)))
    (else #F)))
```
Scheme Functions: Example

- **append** takes two lists as parameters:
 - returns the first parameter list with the elements of the second parameter list appended at the end.

```
(define (append list1 list2)
  (cond
    ((null? list1) list2)
    (else (cons (car list1)
                 (append (cdr list1) list2)))))
```
Functional Forms in Scheme

- **Functional Composition:**
 - \((\text{cdr} \ (\text{cdr} \ '(\text{A B C}))) \Rightarrow (\text{C})\)
 - HW: define a function that is the composition of \text{cdr} with \text{cdr}.

- **Apply-to-All:**
 - one form in Scheme is \text{map}, which applies a given function to all elements of a given list.

 \[(\text{define} \ (\text{map} \ \text{fun} \ \text{lis}) \]
 \[(\text{cond}
 \ ((\text{null?} \ \text{lis}) \ ()
 \ (\text{else} \ (\text{cons} \ (\text{fun} \ (\text{car} \ \text{lis}))
 \ (\text{map} \ \text{fun} \ (\text{cdr} \ \text{lis}))))

)\]
Procedures That Return Procedures

> (define (make-adder (num)
 (lambda (x)
 (+ x num)))

> ((make-adder 10) 9) \Rightarrow ?

> ((lambda (x) (+ x 10)) 9) \Rightarrow ?
Functions that build Scheme code

• It is possible in Scheme to define a function that builds Scheme code and requests its interpretation.

• This is possible because the interpreter is a user-available function, `eval`.
Functions that build Scheme code

- Building a function that adds a list of numbers:

  ```scheme
  (define (adder lis)
    (cond
      ((null? lis) 0)
      (else (eval (cons '+ lis)
                  (scheme-report-environment 5)))))
  ```

- The parameter is a list of numbers to be added;
 - `adder` inserts a `+` operator and evaluates the resulting list.
 - Use `cons` to insert the atom `+` into the list of numbers.
 - Be sure that `+` is quoted to prevent evaluation.
 - Submit the new list to `eval` for evaluation.
Conceptually Infinite Lists in Scheme

- A doomed attempt to define the infinite list of integers:

 > (define ints
 (lambda (n)
 (cons n (ints (+ n 1))))

 > (define integers (ints 1))
Conceptually Infinite Lists in Scheme

- **Delayed Evaluation**: delay the creation of remaining integers until needed.

```scheme
> (define ints
    (lambda (n)
      (cons n (lambda () (ints (+ n 1))))))
> (define integers (ints 1))
> integers ⇒ (1 . #<procedure>)
```

- How do we access elements in the list?
Conceptually Infinite Lists in Scheme

• **Head** – can get the head with car:
 > (define head car)
 > (head integers) ⇒ Value: 1

• **Tail** – must force the evaluation of the tail:
 > (define tail
 (lambda (list)
 ((cdr list))))
 > (tail integers) ⇒ (2 . #<procedure>)
 > (head (tail (tail integers))) ⇒ ?
Conceptually Infinite Lists in Scheme

- **Element** – get the n-th integer:

  ```scheme
  > (define element
     (lambda (n list)
       (if (= n 1)
         (head list)
         (element (- n 1) (tail list))))
  > (element 6 integers) ⇒ 6
  > (element 6 (tail integers)) ⇒ ?
  ```
Conceptually Infinite Lists in Scheme

- **Take** – get the first \(n \) integers:
  ```scheme
  > (define take
     (lambda (n list)
       (if (= n 0)
         '()
         (cons (head list)
               (take (- n 1) (tail list))))
     > (take 5 integers) ⇒ (1 2 3 4 5)
     > (take 3 (tail integers)) ⇒ ?
  ```
The Fibonacci Numbers

- The Fibonacci numbers as a conceptually infinite list:
 > (define fibs
 (lambda (a b)
 (cons a (lambda () (fibs b (+ a b)))))

 > (define fibonacci (fibs 1 1))

 > (take 10 fibonacci)
 ⇒ (1 1 2 3 5 8 13 21 34 55)

 > (element 10 (tail fibonacci)) ⇒ ?
The Sum of Two Infinite Lists

```scheme
> (define sum
  (lambda (list1 list2)
    (cons (+ (head list1) (head list2))
      (lambda ()
        (sum (tail list1)
          (tail list2)))))))

> (take 10 (sum integers integers))
⇒ (2 4 6 8 10 12 14 16 18 20)

> (take 5 (sum integers fibonacci))
⇒ ?
```
The Sum of Two Infinite Lists

• What does the following list correspond to?

> (define foo
 (cons 1
 (lambda ()
 (cons 1
 (lambda ()
 (sum foo (tail foo)))))))))

> (take 10 foo) ⇒?
Reading Assignment

- Chapter 10 from the textbook (10.1, 10.2, 10.3, 10.5, 10.7):
 - ignore imperative features (e.g. assignment, iteration).

- Chapters 1 & 2 from the Scheme programming book at http://www.scheme.com/tspl3/:
 - ignore imperative features (e.g. assignment, iteration).

- DrScheme is installed on the prime machines (p1 & p2).
 - you can also install it on your Win/Linux/Mac machine by downloading it from racket-lang.org.

- Familiarize yourself with the Scheme interpreter by typing in examples from the textbook or lecture notes.
 - set the language to “Standard (R6RS)”.