Machine Learning
CS 6830

Lecture 01

Razvan C. Bunescu
School of Electrical Engineering and Computer Science
bunescu@ohio.edu
What is Learning?

• Merriam-Webster:
 – *learn* = to acquire knowledge, understanding, or skill … by study, instruction, or *experience*.

• What (tasks) do we learn:
 – read, translate, write, speak.
 – walk, play backgammon, ride bikes, drive cars, fly helicopters.
 – categorize email, recognize faces, diagnose diseases, …

• Why do we learn?
 – to *improve performance* on a given task.
What is Learning?

Class C_1

Class C_2
What is Learning?
What is Learning?

Class C_1

Class C_2
What is Learning?

Class C_1

Class C_2
What is Learning?

Class C_1

Class C_2
What is Machine Learning?

Machine Learning = constructing computer programs that automatically improve with experience:

- **Supervised Learning** i.e. learning from labeled examples:
 - Classification
 - Regression

- **Unsupervised Learning** i.e. learning from unlabeled examples:
 - Clustering.
 - Dimensionality reduction (visualization).
 - Density estimation.

- **Reinforcement Learning** i.e. learning with delayed feedback.
Supervised Learning

• Task = learn a function \(f : X \rightarrow T \) that maps input instances \(x \in X \) to output targets \(t \in T \):
 – Classification:
 • The output \(t \in T \) is one of a finite set of discrete categories.
 – Regression:
 • The output \(t \in T \) is continuous, or has a continuous component.

• Supervision = set of training examples:
 \((x_1, t_1), (x_2, t_2), \ldots, (x_n, t_n)\)
Classification vs. Regression
Classification: Junk Email Filtering

[-Sahami, Dumais & Heckerman, AAAI’98]
Classification: Routing in Wireless Sensor Networks

Wang, Martonosi & Peh, SECON’06

• Link quality prediction:
 - Provide a set of training links:
 • received signal strength, send/forward buffer sizes
 • node depth from base station, forward/backward probability
 o LQI = Link Quality Indication, binarized as {Good, Bad}
 - Train Decision Trees model to predict LQ using runtime features.
Classification: Handwritten Zip Code Recognition

Handwritten digit recognition:

- Provide images of handwritten digits, labeled as \{0, 1, ..., 9\}.
- Train Neural Network model to recognize digits from input images.

[Le Cun et al., Neural Computation ‘89]
Classification: Medical Diagnosis

• Cancer diagnosis from gene expression signatures:
 – Create database of gene expression profiles (X) from tissues of known cancer status (Y):
 • Human acute leukemia dataset:
 – http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
 • Colon cancer microarray data:
 – http://microarray.princeton.edu/oncology
 – Train Logistic Regression / SVM / RVM model to classify the gene expression of a tissue of unknown cancer status.

[Krishnapuram et al., GENSIPS’02]
Classification: Other Examples

- Handwritten letter recognition
- Face recognition
- Credit card applications/transactions
- Recommender systems: books, music, …
- Fraud detection in e-commerce
- Worm detection in network packets
Regression: Examples

1. Stock market prediction:
 - Use the current stock market conditions \((x \in X)\) to predict tomorrow’s value of a particular stock \((t \in T)\).

2. Oil price, GDP, income prediction.

3. Chemical processes:
 - Predict the yield in a chemical process based on the concentrations of reactants, temperature and pressure.

• Algorithms:
 - *Linear Regression*, *Neural Networks*, *Support Vector Machines*, …
Unsupervised Learning: Hierarchical Clustering

Pan Troglodytes

Homo Sapiens
Unsupervised Learning: Clustering

- Partition unlabeled examples into disjoint clusters such that:
 - Examples in the same cluster are very similar.
 - Examples in different clusters are very different.

- Need to provide:
 - number of clusters (k = 2)
 - similarity measure (Euclidean)
Unsupervised Learning: Clustering

- Partition unlabeled examples into disjoint clusters such that:
 - Examples in the same cluster are very similar.
 - Examples in different clusters are very different.

- Need to provide:
 - number of clusters \((k = 2)\)
 - similarity measure (Euclidean)
Unsupervised Learning: Dimensionality Reduction

- **Manifold Learning:**
 - Data lies on a low-dimensional manifold embedded in a high-dimensional space.
 - Useful for *feature extraction* and *visualization*.
Reinforcement Learning

- Interaction between agent and environment modeled as a sequence of actions & states:
 - Learn policy for mapping states to actions in order to maximize a reward.
 - Reward given at the end state \(\Rightarrow \) delayed reward.
 - States may be only partially observable.
 - Trade-off between exploration and exploitation.

- Examples:
 - Backgammon [Tesauro, CACM‘95].
 - Aerobatic helicopter flight [Abbeel, NIPS’07].
Reinforcement Learning: TD-Gammon

Learn to play Backgammon:
- Immediate reward:
 - +100 if win
 - -100 if lose
 - 0 for all other states
- Temporal Difference Learning with a Multilayer Perceptron.
- Trained by playing 1.5 million games against itself.
- Played competitively against top-ranked players in international tournaments.

[Tesauro, CACM‘95]
Relevant Disciplines

• Mathematics:
 – Probability & Statistics
 – Information Theory
 – Linear Algebra
 – Optimization

• Algorithms:
 – Computational Complexity

• Artificial Intelligence

• Psychology

• Neurobiology

• Philosophy